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When public health practitioners use health statistics, sometimes they are interested in the 
actual number of health events, but more often they use the statistics to assess the true underlying 
risk of a health problem in the community. Observed health statistics, that is, those counts, rates or 
percentages that are computed or estimated from health surveys, vital statistics registries, or other 
health surveillance systems, are not always an accurate reflection of the true underlying risk in the 
population. Observed rates can vary from sample to sample or year to year, even when the true 
underlying risk remains the same.  
 

Statistics based on samples of a population are subject to sampling error. Sampling error 
refers to random variation that occurs because only a subset of the entire population is sampled and 
used to estimate a finding for the entire population. It is often mis-termed "margin of error" in 
popular use. Even those statistics based on health events in an entire population are based on an 
arbitrary sample of time (e.g., January 1 through December 31) and are thus subject to a certain 
amount of sampling error. In general, sampling error gets larger when the sample, population or 
number of events is small.  

 
Statistical sampling theory is used to compute a confidence interval to provide an estimate 

of the potential discrepancy between the true population parameters and observed rates. 
Understanding the potential size of that discrepancy can provide information about how to interpret 
the observed statistic. For instance, if the state infant death rate of 5.94 increased to 6.03 in a one-
year period, is that increase something that should cause concern? If the smoking rate among teens 
decreased from 13% to 8%, is that cause for celebration?  

 
Technically speaking, the 95% confidence interval indicates the range of values within 

which the statistic would fall 95% of the time if the researcher were to calculate the statistic (e.g., a 
percentage or rate) from an infinite number of samples of the same size, drawn from the same 
population. In less technical language, the confidence interval is a range of values within which the 
�true� value of the rate is expected to occur (with 95% probability). This document describes the 
most common methods for calculation of 95% confidence intervals for some rates and estimates 
commonly used in public health.  
 
95% Confidence Interval for a Percentage From a Survey Sample:  

Statistics from survey samples are a good starting point to begin talking about sampling 
theory. To calculate a confidence interval for a percentage, one must first calculate the standard 
error of the percentage. A percentage is also known as the mean of a binomial distribution. Just in 
case you were wondering, the standard error of the mean is a measure of dispersion for the 
hypothetical distribution of means called the sampling distribution of the mean. This is a 
distribution of means calculated from an infinite number of samples of a certain size (the same size 
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as the sample from which the observation was taken), drawn from the same population as the 
original sample.  

Once you have calculated the standard error of the percentage, you must decide how large 
you want the confidence interval to be. The conventional alternative is the 95% confidence interval. 
This is the width of the interval that includes true mean 95% of the time. In a little plainer 
language, a 95% confidence interval for a percentage is the range of scores within which the 
percentage will be found if you went back and got a different sample from the same population. 
(That is, 95% of the time it will). 

 
Transforming the standard error into a 95% confidence interval is rather simple. 

Fortunately, the sampling distribution of the mean has a shape that is almost identical to what is 
known as the normal distribution.1 You need only multiply the standard error by the Z-score of the 
points in the normal distribution that exclude 2.5% of the distribution on either end (two-tailed). 
That Z-score is 1.96. A Z-score of 1.96 defines the 95% confidence interval. A Z-score of 1.65 
defines a 90% confidence interval.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a simple random sample2, the standard error = √ pq/n   
 
where: p is the rate, 
 q is 1 minus the rate, and 
 n is the sample size. 
 
For a rate, such as a death rate, that is expressed as the number of events per 100,000,  

                                                 
1 A distribution is a tool that is used in statistics to associate a statistic (e.g., a percentage, average, or other statistic) 
with its probability. When researchers talk about a measure being "statistically significant," they have used a 
distribution to evaluate the probability of the statistic, and found that it would be improbable under ordinary conditions. 
In most cases, we can rely on measures such as rates, averages, and proportions as having an underlying normal 
distribution, at least when the sample size is large enough.   
2This formula applies to a binomial distribution, such as a percentage or a proportion. The quantity pq is the variance of 
a binomial. If your measure is not a proportion, but, say, an average, you must modify the formula, substituting the pq 
quantity with the variance. 
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p is the number per 100,000,  
q is 100,000 minus that number, and  
n is the sample or population size. 

 
Example: 13% of surveyed respondents indicated that they smoked cigarettes. The sample 
consisted of 500 persons in a simple random sample.  
 

The standard error =√ (0.13*0.87) /500 = .015  
 
Then the 95% confidence interval is:  
 

+ 1.96 * standard error =  + 1.96 * .015 = .0294, or 2.94%  

And the lower and upper limits of the 95% confidence interval are:  
 

Lower Limit (LL) = 13% -  2.94% = 10.06% 
Upper Limit (UL) = 13% + 2.94% = 15.94% 

 
So the 95% confidence interval has a lower limit of 10.1% and an upper limit of 15.9%  
 
Small Samples  

If the sample from which the percentage was calculated was rather small (according to 
central limit theorem we can define small as 29 or fewer) then the shape of the sampling 
distribution of the mean is not the same as the shape of the normal distribution. In this special case, 
we can use another distribution, known as the t distribution, that has a slightly different shape than 
the normal distribution.3 
 

Student�s t  Distribution at Varying Degrees of Freedom (k) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
3 Student's t-distribution, downloaded on 2/13/09 from http://en.wikipedia.org/wiki/File:Student_densite_best.JPG  

http://en.wikipedia.org/wiki/File:Student_densite_best.JPG
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The procedures in this case are analogous to those above but the t-score comes from a 

family of distributions which depend on the �degrees of freedom.� The number of degrees of 
freedom is defined as �n-1� where �n� is the size of the sample. For a sample of size=30 the 
degrees of freedom is equal to 29. So, for a 95% confidence interval, you must use the t-score 
associated with 29 degrees of freedom. That particular t-score is 2.045 (see Appendix 1.). So you 
would multiply the standard error by 2.045 instead of 1.96 to generate the 95% confidence interval.  

 
Appendix 1 lists the t-scores for specific degrees of freedom and sizes of confidence 

interval. For a 95% confidence interval, you would use the t-score that defines the points on the 
distribution that excludes the most extreme 5% of the distribution, which is 0.025 on either end of 
the distribution.  
 
Finite Populations  

If the survey sampled all or most of the members of the population, then using the finite 
population correction factor will improve (decrease the width of) the confidence interval.  
 
The finite population correction factor = 1-f, where f is the sampling fraction  
 
f = n/N where n is the size of the sample and N is the size of the population. The sampling fraction 
is simply the proportion of the population that was included in the sample. 
 
The standard error of the mean for a binomial distribution for a finite sample  
 

s.e.percentage= √ pq/n * (1-f)   
 
When the Percentage is Close to 0% or 100%  

When the percentage is close to 0% or 100%, the formulas given above can result in 
illogical results, that is, confidence limits that fall below 0% or above 100%. A special formula is 
used to calculate asymmetric confidence limits in these cases.  
 
When the Percentage is Equal to 0% 

When the percentage or rate is equal to zero, using the above calculation will yield a 
confidence interval of zero, which is incorrect. A simple method you can use to estimate the 
confidence interval when the percentage or rate is zero is to assume the number of cases in the 
numerator of your rate is �3,� then calculate the confidence interval using the population size in 
your original calculation.4  
 
 

                                                 
4 Lilienfeld, DE and Stolley, PD Foundations of Epidemiology (3rd Ed.). Oxford University Press, 1994. 
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Complex Sample Designs  

The above formulas assume that the survey sample was a simple random sample. If the 
survey used a complex sample design (such as clustering within households or disproportionate 
sampling from various geographic regions), special techniques must be used to calculate the 
standard error of the mean. Those techniques are accomplished using statistical software such as 
SAS or SUDAAN.  
 
95% Confidence Intervals for Rare Events:  

In the case of rare events idstributed randomly across time, the normal distribution no 
longer applies. A different distribution, the Poisson distribution is used to model rare events that 
occur across time, such as the "100 year flood."5 It is used to calculate confidence intervals for rare 
health events, such as infant mortality or cancer. This distribution is not symmetric about its mean 
and so the associated confidence intervals will not be symmetric (the upper limit is farther from the 
estimate than is the lower limit).  

 
The Poisson distribution does, however, assume the shape of a normal distribution when 

there are 20 or more events in the numerator. So we use a Poisson distribution for rare events 
(when the number of events is less than 20), but we can use the normal distribution when the 
number of events is 20 or more.  
 

Poisson Distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Appendix 2 you will find lower and upper confidence factors for use in calculating a 95% 
confidence interval for a rate based on a specified number of events, from 1 to 20. To calculate the 

                                                 
5 �In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the 
probability of a number of events occurring in a fixed period of time if these events occur with a known average rate 
and independently of the time since the last event.� Poisson Distribution, downloaded on 2/13/09 from 
http://en.wikipedia.org/wiki/Poisson_distribution. 

http://en.wikipedia.org/wiki/Poisson_distribution
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confidence interval, multiply the estimated rate by the confidence factor associated with the number 
of events on which the rate is based.  
 

For example, in a given geographic area, there were 722 births in a single year, and seven 
infant deaths. The infant mortality rate in was 9.7 per 1,000 live births, calculated as 
[(7/722)*1,000]. The lower and upper confidence limits are calculated using the confidence factors 
found on Appendix 2. The factors for seven events are .4021 and 2.0604 for the lower and upper 
limits of the confidence interval, respectively. The lower limit of the confidence interval = 
9.7*.4021 = 3.90, and the upper limit = 9.7*2.0604 = 19.99, for a rate of 9.7 and a 95% confidence 
interval from 3.90 to 19.99. If this same rate had been based on 100 deaths then the confidence 
factors would be .8136 and 1.2163. The lower limit would be 9.7*.8136, and the upper limit 
9.7*1.2163 for an estimate of 9.7 with a confidence interval from 7.89 to 11.80. This interval is 
much smaller due to the greater number of deaths on which the rate is based. (But ordinarily we 
would just use the normal distribution when we have 100 events!) 
 
Directly Age-Adjusted Rates  

When comparing across geographic areas, some method of age-adjusting is typically used 
to control for area-to-area differences in health events that can be explained by differing ages of the 
area populations. For example, an area that has an older population will have higher crude (not age-
adjusted) rates for cancer, even though its exposure levels and cancer rates for specific age groups 
are the same as those of other areas. One might incorrectly attribute the high cancer rates to some 
characteristic of the area other than age. Age-adjusted rates control for age effects, allowing better 
comparability of rates across areas. Direct standardization adjusts the age-specific rates observed in 
the small area to the age distribution of a standard population (Lilienfeld & Stolley, 1994)6.  
 
The confidence interval for a directly standardized rate (DSR) can be computed as follows:  
 

95% CIDSR = +1.96 * s.e.DSR * K 
 
95% CIDSR = +1.96* √( ∑(Wi

2*VARRi) * K  
 
95% CIDSR = +1.96* √( ∑(Wi

2*((Ri * (1 - Ri))/ni)) * K  
Where� 

s.e.DSR = the standard error of the directly standardized rate 

K = a constant (e.g., 100,000) that is being used to communicate the rate as a whole number 

VARDSR = the variance of the directly standardized rate 

Wi = the population weight for the ith age group in the standard population 

Ri = the age-specific death rate in the ith age group of the index population (#deaths/population 
count, before applying the constant) 

ni = the population count in age group i of the index population 

 
 

                                                 
6 Lilienfeld, DE and Stolley, PD (1994) 
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Indirectly Age-Adjusted Rates  

The direct method can present problems when population sizes are particularly small. 
Calculating directly standardized rates requires calculating age-specific rates, and for small areas 
these age-specific rates may be based on one or two events. The general rule of thumb is that if 
there are fewer than 20 (some say 25) cases in the index population, indirect standardization of 
rates should be used.  

 
Indirectly standardized rates are based on the Standardized Mortality Ratio (SMR) and the 

crude rate for a standard population. Indirect standardization adjusts the overall standard population 
rate to the age distribution of the small area (Lilienfeld & Stolley, 1994)7. Strictly speaking, it is 
valid to compare indirectly standardized rates only with the rate in the standard population, not with 
each other.8 
 
An indirectly standardized death or disease rate (ISR) can be computed as:  
 

ISR = SMR*Rs  
 
Where...  

SMR = observed deaths in the small area/expected deaths in the small area  

e = ∑(Rsi * ni)  

Rs = the crude death rate in the standard population  

Rsi = the age-specific death rate in age group i of the standard population ( # deaths / population 
count, before applying the constant) 

ni = the population count in age group i of the small area  

 
For indirectly standardized rates based on events that follow a Poisson distribution and for 

which the ratio of events to total population is small (<.3) and the sample size is large, the 
following two methods can be used to calculate confidence interval (Kahn & Sempos, 1989)9.  
 
(1) When the number of events >20:  
 

CIISR = +1.96 √(SMR/e) * Rs * K  
 
Where...  

SMR = observed deaths in the index area/expected deaths in the index area  

e = expected deaths in the index area = ∑(Rsi * ni)  

                                                 
7 Lilienfeld & Stolley (1994) 
8 Rothman, Kenneth J. and Greenland, Sander (1998) Modern Epidemiology (2nd Ed.). Philadelphia, PA: Lippincott. 
9 Harold A. Kahn and Christopher T. Sempos (1989) Statistical Methods in Epidemiology. New York: Oxford 
University Press. 
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Rs = the crude death rate in the standard population  

Rsi = the age-specific death rate in age group i of the standard population ( # deaths / population 
count) 

ni = the population count in age group i of the small area 

K = a constant (e.g., 100,000) that is being used to communicate the rate  

 
(2) When the number of events <=20:  
 

LLISR = (Lower limit for parameter estimate from Poisson table/e)) * Rs * K  

ULISR = (Upper limit for parameter estimate from Poisson table/e)) * Rs * K  

 
Where� 

LL is the lower confidence interval limit, and  

UL is the upper confidence interval limit.  
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Appendix 1. Upper critical values of Student's t distribution with K degrees of freedom 
 

Probability of exceeding the critical value 
  

K 0.10 0.05 0.025 0.01 0.001 
1 3.078 6.314 12.706 31.821 318.313 
2 1.886 2.920 4.303 6.965 22.327 
3 1.638 2.353 3.182 4.541 10.215 
4 1.533 2.132 2.776 3.747 7.173 
5 1.476 2.015 2.571 3.365 5.893 
6 1.440 1.943 2.447 3.143 5.208 
7 1.415 1.895 2.365 2.998 4.782 
8 1.397 1.860 2.306 2.896 4.499 
9 1.383 1.833 2.262 2.821 4.296 
10 1.372 1.812 2.228 2.764 4.143 
11 1.363 1.796 2.201 2.718 4.024 
12 1.356 1.782 2.179 2.681 3.929 
13 1.350 1.771 2.160 2.650 3.852 
14 1.345 1.761 2.145 2.624 3.787 
15 1.341 1.753 2.131 2.602 3.733 
16 1.337 1.746 2.120 2.583 3.686 
17 1.333 1.740 2.110 2.567 3.646 
18 1.330 1.734 2.101 2.552 3.610 
19 1.328 1.729 2.093 2.539 3.579 
20 1.325 1.725 2.086 2.528 3.552 
21 1.323 1.721 2.080 2.518 3.527 
22 1.321 1.717 2.074 2.508 3.505 
23 1.319 1.714 2.069 2.500 3.485 
24 1.318 1.711 2.064 2.492 3.467 
25 1.316 1.708 2.060 2.485 3.450 
26 1.315 1.706 2.056 2.479 3.435 
27 1.314 1.703 2.052 2.473 3.421 
28 1.313 1.701 2.048 2.467 3.408 
29 1.311 1.699 2.045 2.462 3.396 
30 1.310 1.697 2.042 2.457 3.385 
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Appendix 2. 95% Confidence Interval Factors for Poisson-Distributed Events 
 
 

number of events 

95% Confidence 
Interval, Lower 

Limit Factor 

95% Confidence 
Interval, Upper 

Limit Factor 

0 0.0000 3.7000 

1 0.0253 5.5716 

2 0.1211 3.6123 

3 0.2062 2.9224 

4 0.2725 2.5604 

5 0.3247 2.3337 

6 0.3670 2.1766 

7 0.4021 2.0604 

8 0.4317 1.9704 

9 0.4573 1.8983 

10 0.4795 1.8390 

11 0.4992 1.7893 

12 0.5167 1.7468 

13 0.5325 1.7100 

14 0.5467 1.6778 

15 0.5597 1.6493 

16 0.5716 1.6239 

17 0.5825 1.6011 

18 0.5927 1.5804 

19 0.6021 1.5616 

20 0.6108 1.5444 

 


